16 research outputs found

    Academic Performance and Behavioral Patterns

    Get PDF
    Identifying the factors that influence academic performance is an essential part of educational research. Previous studies have documented the importance of personality traits, class attendance, and social network structure. Because most of these analyses were based on a single behavioral aspect and/or small sample sizes, there is currently no quantification of the interplay of these factors. Here, we study the academic performance among a cohort of 538 undergraduate students forming a single, densely connected social network. Our work is based on data collected using smartphones, which the students used as their primary phones for two years. The availability of multi-channel data from a single population allows us to directly compare the explanatory power of individual and social characteristics. We find that the most informative indicators of performance are based on social ties and that network indicators result in better model performance than individual characteristics (including both personality and class attendance). We confirm earlier findings that class attendance is the most important predictor among individual characteristics. Finally, our results suggest the presence of strong homophily and/or peer effects among university students

    Multi-scale spatio-temporal analysis of human mobility

    Get PDF
    The recent availability of digital traces generated by phone calls and online logins has significantly increased the scientific understanding of human mobility. Until now, however, limited data resolution and coverage have hindered a coherent description of human displacements across different spatial and temporal scales. Here, we characterise mobility behaviour across several orders of magnitude by analysing ∼850 individuals' digital traces sampled every ∼16 seconds for 25 months with ∼10 meters spatial resolution. We show that the distributions of distances and waiting times between consecutive locations are best described by log-normal and gamma distributions, respectively, and that natural time-scales emerge from the regularity of human mobility. We point out that log-normal distributions also characterise the patterns of discovery of new places, implying that they are not a simple consequence of the routine of modern life

    Understanding the interplay between social and spatial behaviour

    Get PDF
    According to personality psychology, personality traits determine many aspects of human behaviour. However, validating this insight in large groups has been challenging so far, due to the scarcity of multi-channel data. Here, we focus on the relationship between mobility and social behaviour by analysing trajectories and mobile phone interactions of ∼1000 individuals from two high-resolution longitudinal datasets. We identify a connection between the way in which individuals explore new resources and exploit known assets in the social and spatial spheres. We show that different individuals balance the exploration-exploitation trade-off in different ways and we explain part of the variability in the data by the big five personality traits. We point out that, in both realms, extraversion correlates with the attitude towards exploration and routine diversity, while neuroticism and openness account for the tendency to evolve routine over long time-scales. We find no evidence for the existence of classes of individuals across the spatio-social domains. Our results bridge the fields of human geography, sociology and personality psychology and can help improve current models of mobility and tie formation

    Detrimental network effects in privacy: a graph-theoretic model for node-based intrusions

    No full text
    Despite proportionality being one of the tenets of modern data protection laws such as the EU General Data Protection Regulation and Law Enforcement Directive, we currently lack a robust analytical framework to evaluate the reach of modern data collections and the network effects at play. We here propose a graph-theoretic model and notions of node- and edge-observability to quantify, in the form of attacks, the reach of networked data collections. We first prove closed-form expressions for our metrics and quantify the impact of the graph’s structure on observability. Second, using our model, we quantify how (1) from 270,000 compromised accounts, Cambridge Analytica collected 68.0M Facebook profiles; (2) from surveilling 0.01% the nodes in a mobile phone network, a law-enforcement agency could observe 18.6% of all communications; and (3) an app installed on 1% of smartphones could monitor the location of half of the London population through close proximity tracing. We hope this work to help better quantify the reach and therefore proportionality of data collection mechanisms moving forward

    Understanding Dynamics of Truck Co-Driving Networks

    No full text
    The goal of this paper is to learn the dynamics of truck co-driving behaviour. Understanding this behaviour is important because co-driving has a potential positive impact on the environment. In the so-called co-driving network, trucks are nodes while links indicate that two trucks frequently drive together. To understand the network’s dynamics, we use a link prediction approach employing a machine learning classifier. The features of the classifier can be categorized into spatio-temporal features, neighbourhood features, path features, and node features. The very different types of features allow us to understand the social processes underlying the co-driving behaviour. Our work is based on a spatio-temporal data not studied before. Data is collected from 18 million truck movements in the Netherlands. We find that co-driving behaviour is best described by using neighbourhood features, and to lesser extent by path and spatio-temporal features. Node features are deemed unimportant. Findings suggest that the dynamics of a truck co-driving network has clear social network effects.Algorithms and the Foundations of Software technolog

    Capturing Privacy-preserving User Contexts with IndoorHash

    No full text
    International audienceIoT devices are ubiquitous and widely adopted by end-users to gather personal and environmental data that often need to be put into context in order to gain insights. In particular, location is often a critical context information that is required by third parties in order to analyse such data at scale. However, sharing this information is i) sensitive for the user privacy and ii) hard to capture when considering indoor environments.This paper therefore addresses the challenge of producing a new location hash, named IndoorHash, that captures the indoor location of a user, without disclosing the physical coordinates, thus preserving their privacy. This location hash leverages surrounding infrastructure, such as WiFi access points, to compute a key that uniquely identifies an indoor location.Location hashes are only known from users physically visiting these locations, thus enabling a new generation of privacy-preserving crowdsourcing mobile applications that protect from third parties re-identification attacks. We validate our results with a crowdsourcing campaign of 30 mobile devices during 4 weeks of data collection
    corecore